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CHAPTER 7 

 

SOME REFLECTIONS ON TEACHING ALGEBRA 
THROUGH GENERALIZATION 

 

 
LUIS RADFORD 

 

 

This brief commentary chapter devoted to issues suggested by the Mason and Lee 
chapters raises a number of fundamental questions concerning generalization: the 
epistemological status of generalization and the nature and complexities of 
generalization as it is manifested in the didactic context of the algebra classroom. 

 
1. THE EPISTEMOLOGICAL STATUS OF GENERALIZATION 

 

Mrs. Smith, sitting in her living room, hears the doorbell ring. She gets up to see 
who is at the door. No one is there, and she returns to the room. Mr. Smith pursues 
their conversation when once again the doorbell rings. Mrs. Smith gets up once 
again to answer, but no one is there. This scene repeats itself a third time. The fourth 

time the doorbell rings, Mrs. Smith exclaims to her husband: "Do not send me to 
open the door! You have seen that it is useless! Experience has shown us that when 
we hear the doorbell, it implies that no one is there!" 

You surely remember the above scene from Cantatrice chauve by Eugne 
Ionesco. What is so captivating about this scene is that it reflects in an impeccable 
way the dynamics of a procedure of generalization (in fact, Mrs. Smith remains 
faithful to the "observed facts") and surely the conclusion is absurd (for us). 

The fragile status of knowledge obtained through a generalization process brings 
us to the question of what constitutes a "good" or "bad" generalization. The answer to 
this question, which has puzzled mathematicians and philosophers for the last 25 
centuries, has been given to us in various forms: normative logic, inductive or 
probabilistic logic, statistics, and so on. Surely generalization is not specific to 
mathematics: From a certain point of view, it is perhaps one of the deepest 
characteristics of the whole of scientific knowledge and even, perhaps, of daily non­ 
scientific knowledge, as shown by the little extract of Ionesco's theater piece quoted 
above. 

From a mathematical teaching perspective that favors generalizing activities, it 
may be convenient to try to answer the question: Why, in the construction of his/her 
knowledge, does the cognizer make generalizations? The "why" should be understood, 
of course, in its deeper meaning, so that we may specify the epistemological role of 
the generalization as well as the nature of the relation between generalization and the 

resulting knowledge. 
From the same perspective, other interesting questions are: 

• What is the significance of generalization in mathematics? and more 
specifically: 

• What are the kinds and the characteristics of generalizations involved in algebra? 

• What are the algebraic concepts that we can reach through numeric 
generalizations? 
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These questions are not addressed directly by Mason and by Lee (this volume). 

The reason is, it seems to me, that they give to generalization a particular 

epistemological status. Mason, for instance, says that "generalization is the life­ 

blood, the heart of mathematics." Lee states that the most important activities related 

to algebra can be seen as generalizing activities; "nor is it much of a challenge," she 

says, "to demonstrate that functions, modeling and problem solving are all types of 

generalizing activities, that algebra and indeed all of mathematics is about 

generalizing patterns." The basic (more or less implicit) argument of both authors is 

that this "inner" developmental characteristic of mathematical activity, shown in 

particular by the history of mathematics (see references to history by both authors), 

can be translated in the field of education and used as a didactic device when 

mathematics is seen as a subject to be taught. I think that the hypothesis that 

generalization can be seen as an epistemic norm needs to be studied in greater detail 

and that the consequences that it has for the teaching of mathematics need to be 

specified. I believe that the answers to the above questions depend on the way in 

which we interpret the development of mathematics and the way in which we 

conceive the development of mathematical knowledge. A superficial look at the 

history of mathematics leads us to the impression that all mathematics is about 

generalizing. A closer look suggests that, if we accept generalization as an epistemic 

norm, it could not function alone but may be related to another probable epistemic 

norm, namely the problem-solving epistemic norm. Put roughly, I think that the 

latter functions as a primary need for knowledge, while the former functions as a 

driven-norm. Certainly, this is a point in mathematical cognition that requires deeper 

study. 

 
2. WHAT ARE THE KINDS AND THE CHARACTERISTICS OF GENERALIZATIONS INVOLVED IN 

ALGEBRA? 

 

In considering generalization from a didactic point of view, we should take into 

account that generalization depends on the mathematical objects we are generalizing. 

Generalization is not a context-free activity. There are many kinds of generalizations 

that can all be very different. 

What are the characteristics of generalization based on geometric-numerical 

patterns? I would like to point out two specific elements in these kinds of 

generalizations. The first deals with a logical aspect and the second is related to the 

role played by external representations in generalizing geometric-numeric patterns. 
 

2.1. The Problem of Validity in Generalizing Results 

 
A goal in generalizing geometric-numeric patterns is to obtain a new result. 

Conceived in this form, generalization is not a concept. It is a procedure allowing for 

the generation, within a theory and beginning with certain results, of new results. 

A generalization procedure g arrives at a conclusion a, starting from a sequence 

of "observed facts," a1, a2, …, an. We can write this as: 

(α is derived from a
1
, a2, ..., an) 
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The facts a1, a2, ..., an are interpreted according to a certain way of thinking 

(Reck, 1981, refers to a style of thinking), depending on the knowledge and purposes 

of the observer.
1 This way of thinking results from the observer's conceptualization 

of the mathematical objects and relations involved in and between the facts ai, and 
leads to a particular form of mathematical thinking. 

What is important here is that one of the most significant characteristics of 

generalization is its logical nature, which makes possible the conclusion α. The 

underlying logic of generalization can be very different, depending on the student's 
mathematical thinking. For instance, many students think that some examples (even 

one or two) are sufficient to justify the conclusion α. (Radford & Berges, 1988). 

Other students think that guessing the result from the first terms a1. a2. a3 of    a 
sequence is sufficient to justify the conclusion α. Other students think that the 

validity of a conclusion α is accomplished by testing it with a special term of the 

sequence, let's say the 100th term, or even the 1000th term. After all, is it necessary 

to prove a., when it appears as an obvious statement?2 Who decides about validity? 

Generalization as a didactic device cannot avoid the problem of validity, and 

validity is in itself a very complex idea. This does not mean that generalization 

cannot be a useful bridge to algebra. I want to point out that using generalization 

supposes that we should be prepared to work with this additional (logical) element in 

the classroom. 
 

2.2. External Representations as Symbols 

 
The use of external representations as symbols in generalization will be different 
from their use in elementary arithmetic. This is, in my opinion, another aspect to 
take into consideration. In order to explain this, let e1, e2, ..., en be the symbolic 

expressions of the facts a1, a2, ..., an. The eis are "sentences" in a symbolic system 

L1 (take as an example a certain arithmetic symbolic system, e.g., the modem 

arithmetic symbolic system or the ancient Greek arithmetic symbolic system) and let 

ɛ be the symbolic expression of a. in a certain symbolic system L2 (eventually the 

same symbolic system L1 or another one, e.g., our modem algebraic symbolic 
system), then a generalization procedure can be seen as illustrated in Figure 1. 

 

 

Figure 1. 



110 

 
The diagram shown in Figure 1 displays the many functioning modes of a 

generalization procedure. In the How Many? activity of Mason's appendix (this 

volume), he places emphasis on the double relation S1 <--> L1, in order to obtain the 

sequence of eis: 1, 1 + 3 x 1, 1 + 3 x 2, 1 + 3 x 3. Of course, in  doing  so, one of the 
most important difficulties a student must face is to understand  this very special 

way of counting, in which we do not write the actual number of rectangles (i.e., 1, 4, 

7, 10, ...), but new expressions of these numbers. It requires "seeing" the "facts" ai 

in a different way. Representations as mathematical symbols are not independent of 

the goal. They require a certain anticipation of the goal. The problem that now arises 

is that of knowing which facets of the object should be kept in its representation. 3 

We will now try to see, in "slow motion," the mental jump to larger terms in the 

sequence from this activity. 

When the question is asked: how many squares will be used to make the 137th 

picture, the generalization is done from the invariance of the syntactic structure of the 

eis (the student can then get the answer 1 + 3 x 136). But how can she be sure that 

this invariance is an acceptable argument? 

We can take advantage of the above diagram to see an important difference 

between the questions asked by Lee and those found in Mason's appendix. When 

referring to the "dot rectangle problem," the first two questions are asked within 

arithmetic. The last question cannot be asked within arithmetic. In fact, in arithmetic 

we cannot make reference to the nth rectangle! This is a new expression related to a 

new concept. This last question is thus formulated within a domain where symbolic 

vehicles give precision to algebraic ideas. Even if both authors agree on the fact that 

algebraic symbolism is not the first goal of generalization, it is clear that this 

symbolism will be called upon to play a certain role. 

For example, if in a certain pattern we see the sequence of terms in a certain 

way, we get a resulting expression ɛ(n) of a formula α. But if we see this same 

sequence in another way, we get a different expression ɛ'(n) for the same formula α. 
Take, for instance, the problem in Mason's appendix, where we get the formulas 

ɛ(n) = 1+ 3 (n - 1) and ɛ'(n) = 3n - 2. What arguments can we use to show the 

equivalence of these formulas? Will these be syntactic arguments? 
 

3. WHAT ARE THE ALGEBRAIC CONCEYTS THAT WE CAN REACH THROUGH NUMERIC  
GENERALIZATIONS? 

 
Let's now consider the kind of concepts that can be reached in generalizing 
geometrical-numeric patterns. The goal of these generalizations is to find an 

expression ɛ representing the conclusion α. The expression ɛ is in fact a formula and 

is constructed on the basis, not of the concrete numbers (like 1, 4, 7) involved in the 

first facts observed, but on the idea of a general number. General numbers appear as 

preconcepts to the concept of variable. 

On the other hand, the goal in algebraic problem solving (where "problem" 

designates a word problem) is not to find a formula, but a number (i.e., unknown) 

through an equation. We therefore have a different situation than the case of 

generalizing a pattern. But this difference is not uniquely at the word level, which 

would lead us to believe that an unknown is but a variable, and an equation is only a 

type of formula. The difference is in fact a fundamental difference--a   conceptual 
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difference--that often goes unnoticed (school books and even school guidelines 

frequently do not recognize this difference). 

In fact, the logical base underlying generalization is that of justifying the 

conclusion. Itis a proof-process, which moves from empirical knowledge (related to 

the facts ai) to ·abstract knowledge that is beyond the empirical scope. Yet, the 

logical base of algebraic resolution is found in its analytic nature. This signifies that 

when solving an equation, or a word problem, we are supposing that we know the 

number we are looking for, and we handle this number as if it were known, so that 

we can reveal its identity in the end. Therefore, we must place ourselves in a 

hypothetical situation. We therefore realize that the logical bases are, in both cases, 

very different. The generalization way of thinking and the analytic way of thinking 

that characterizes algebraic word problem solving are independent and essentially 

irreducible, structured forms of algebraic thinking.
4
 

The above discussion suggests that the algebraic concepts of unknowns and 

equations appear to be intrinsically bound to the problem-solving approach, and that 

the concepts of variable and formula appear to be intrinsically bound to the pattern 

generalization approach.5 Thus, generalization and problem-solving approaches 
appear to be mutual complementary fields in teaching algebra. How can we connect 
these approaches in the classroom? I think this is an open question. 

 
NOTES 

 
Lee's chapter shows, in the "dot rectangle problem," several kinds of perceptions or interpretations 

of the facts ai (ai being the sequence of dot rectangles). 

2 Take, for instance, Lee's first problem, where students had to show, using algebra, that the sum of two 

consecutive numbers is always an odd number. 

3 The results obtained by Lee in the consecutive numbers problem are quite eloquent in this respect: 

"+1" is difficult to perceive as an even number, since the symbol "+1" suggests an excess that is not 

compatible with the idea of even numbers. 

4 It does not mean that a generalization task cannot lead to the solving of an equation or vice versa. For 

instance, in the formula E of Mason's problem N = 1+3 (n - 1), we can ask the following question: 

What is the rank of the figure with 598 squares? What we claim here is that when the student engages 

herself in an algebraic procedure in trying to solve the equation 598 = 1 + 3 (n - 1), the intellectual 

process will be supported by a different logical basis using concepts belonging to a different "form" of 

thinking than that used in the process of obtaining the formula ɛ. 

5    There is another element that points to this same conclusion.  If we look at the emergence of 

symbolism from a historical perspective, we notice that the use of the unknown in problem solving has often 

led to the development of different algebraic languages (Diophantus, Chuquet, Viete, etc.).  However, the 

symbolic representations for the concept of variable came much later: Historically, the mathematical objects 

of variable and equation come from different conceptualizations (see The Roles of Geometry and Arithmetic 

in the Development of Algebra: Historical Remarks from a Didactic Perspective in this volume). 


